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ABSTRACT 

Resonant and f luorescent  s ca t t e r ing  i n  ?lane -para: 2 e l  pLanetary 

atmospheres i s  studied. Chandrasekhar's quadrature approximation method 

i s  extended t o  t h e  radiative transfer equations of resonant and f luores-  

cent emissions with coupling among t r a n s i t l o n s  t o  obtain t h e i r  i n t e n s i t i e s  

a t  a r b i t r a r y  depth and d i r ec t ion  i n  planetary atmospheres. The theory 

i s  appl ied f o r  obtaining l i n e  i n t e n s i t i e s  i n  t he  eases where the approxi-. 

mations of t h e  s ing le  sca t t e r ing  and the assumption of semi- inf ini te  

atmosphere a r e  v a l i d  respect ively.  & c ) T H U R  

~ O D U C T I O N  

Resonant and f luorescent  s ca t t e r ing  of so l a r  rad ia t ion  is one of 

t h e  important mechanisms of formation of emission l i n e s  and bands i n  

p lane tary  atmospheres. I n  the  e a r t h ' s  upper aimosphere it i s  ac tua l ly  

observed as day- o r  tw i l igh t -  airglow. Planetary albedos m y  contain 

some contr ibut ion from resonant and f luorescent  components. I n  many 

cases  it i s  d i f f i c u l t  t o  observe such resonant o r  f luorescent  emissions, 

s ince  they are usual ly  hidden under t h e  strong background continuum due 
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t o  ground r e f l e c t i o n  and Rayleigh sca t t e r ing  i n  t h e  lower dense atmosphere. 

This i s  t h e  reason why t h e  measurements of t e l l u r i c  sodium and Ha emiss ims  

a r e  r e s t r i c t e d  during t h e  twi l igh t  time. However, recent  developments i n  

space vehic les  enable us t o  measure dayglow emissions i n  t h e  high a l t i t u d e s  

where they a r e  f r e e  from contamination by sca t t e red  l i g h t .  Other possi-  

b i l i t i e s  would be t o  observe resonant and f luorescent  emissions i n  t h e  

middleand  f a r -u l t r av io l e t  regions where various absorptive cons t i tuents  

of t h e  planetary atmosphere prevent t h e  r e f l ec t ions  of continuum from 

planetary surface and underlying dense atmosphere. In  such regions the  

resonance and fluorescence from the upper atmosphere can be detected even 

looking towards t h e  planet  during daytime. 

Such a fo r tu i tous  condition nay be found f o r  t he  Schumann-Runge day- 

glow of molecular oxygen i n  the  middle-ultraviolet .  

atmosphere the  height a t  which fluorescence may be s ign i f i can t  f a l l s  be- 

In  the  e a r t h ’ s  

tween 30 km and 11.0 km. 

30 k m  l e v e l  s t rongly absorbs t h e  u l t r a v i o l e t  rad ia t ions  near 2500 A, so 

On t h e  other hand, atmospheric ozone around the  
0 

t h a t  t h e  ground r e f l e c t i o n  and Rayleigh sca t t e r ing  of so l a r  u l t r a v i o l e t  

r ad ia t ion  from underlying l aye r s  i s  e f f ec t ive ly  prevented from contarnin- . ’<’. 
33 
?; x- a t i n g  the  Schumann-Runge dayglow. .̂LL. (Barth, 1963; Barth and Tohmatsu, 1963). .,. 

Accordingly, one may approach t h e  mechanisms of planetary resonance 

and fluorescence from two d i f fe ren t  d i r ec t ions  ( C f .  Fig. 1): 

(1) Resonant o r  f luorescent  spec t ra  as seen a t  t h e  top  and bottom 

of t h e  sca t t e r ing  layer;  

Radiation in t ens i ty  and emissivi ty  a t  a pa r t i cu la r  point  i n s ide  

t h e  layer .  

(2) 

The f i rs t  category w i l l  be found i n  the  work by Chamberlain and 

Sobouti (1962). They showed t h a t  t h e  problem of planetary fluorescence 

can be formulated i n  t h e  l i g h t  of the theory of d i f fuse  r e f l e c t i o n  from 
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a plane-paral le l  atmosphere of f i n i t e  o r  semi- inf ini te  o p t i c a l  thickness.  

The so lu t ions  a r e  then obtained i n  terms of H-, X- and Y- funct ions and 

t h e i r  der ivat ives .  

planetary f luorescent  albedos and t e l l u r i c  dayglow. 

t h e  l a t t e r  category which i s  more general  i n  character ,  is of g rea t e r  

importance f o r  i n t e rp re t ing  t h e  resdts of rocket photometry of dayglow 

emissions. 

tude d i s t r i b u t i o n  of a f luorescent  species  from i t s  i n t e n s i t y  va r i a t ion  

w i t h  height.  

This approach w i l l  have a wide a p p l i c a b i l i t y  i n  studying 

On t h e  o the r  hand, 

This kind of approach will be s i l i table  f o r  deducing the  a l t i -  

It may be r ead i ly  obse rved tha t  the  bas ic  ideas  of t h e  above two 

ca tegor ies  are c lose ly  r e l a t e d  t o  each other ,  as  one can see i n  Chand- 

rasekhar ' s  t r e a t i s e  on Radiative Transfer (1950) r e fe r r ed  t o  as R. T. i n  

t h i s  paper. According t o  Chandrasekhar, t h e  source func t ion  and spec i f i c  

i n t e n s i t y  can be approximated t o  a r b i t r a r y  accuracy by w i n g  the quadrature 

expansion technique, and t h e  H, x- and Y- funct ions are e x p l i c i t l y  given 

a s  ul t imate  solut ions i n  t h e  lMt of i n f i n i t e  approximation. This pro- 

cedure may be applied also t o  more complicated planetary resonance and 

fluorescence problems. One complication, which i s  Important i n  an ac tua l  

problem, i s  t h e  coupling of t r a n s i t i o n s  as discussed by Sobouti (1962). 

e f f e c t  of coupling appears when t h e  f luorescent  system has more than one 

ground s t a t e .  Since t h e  temperature of planetary atmospheres i s  too  low 

for thermal exc i t a t ion  of t h e  e lec t ronic  t r ans i t i ons ,  most of the couplings 

w i l l  be found i n  t h e  v ib ra t iona l  and r o t a t i o n a l  s t ruc tu res  of molecules 

and i n  sp in  substates  of atoms. 

The 

Sobouti (1962) developed the theory of d i f f  use r e f l e c t i o n  and t r a n s  - 
mission with coupling among t r a n s i t i o n s  and showed that the expressions f o r  

d i f fuse ly  r e f l ec t ed  and t ransmit ted i n t e n s i t i e s  can be formulated i n  terms 
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of generalized H-, X- and Y- functions. 

category (l), a s  s t a t e d  above. 

with t h e  e f fec t  of coupling among t r ans i t i ons ,  s t i l l  e x i s t s  fo r  category 

(2).  There 

w e  s h a l l  discuss  r ad ia t ive  t r ans fe r  i n  a coupled resonant and f luorescent  

system f o r  r a the r  idea l ized  cases. I n  Sec. I1 it w i l l  be shown t h a t  t h e  

case where the re  i s  continuous absorption can be converted t o  t h e  standard 

problem by changing var iab les  and constants. 

i n  the l i n e  o r  band in t ens i ty  integrated over frequency r a the r  than t h e  

l i n e  contour i tsel f ,  It is often t r u e  t h a t  t h e  observational data do not 

have su f f i c i en t  accuracy t o  deduce l i n e  shapes. Sections I11 and IV are t h e  

His study e s sen t i a l ly  belongs t o  

The corresponding problem, which deals 

The f i rs t  sec t ion  of t h i s  paper corresponds t o  t h i s  problem, 

Sometimes we  are more in t e re s t ed  

theo r i e s  of l i n e  i n t e n s i t y  i n  the  s ing le  sca t t e r ing  approximation and f o r  

the semi- inf ini te  atmosphere respectively.  This study corresponds t o  the 

theory of stellar absorption lines f o r  the resonant and f luorescent  emissions. 

Sec. V corresponds t o  t h e  case where t h e  exc i ted  state of a f luorescent  

system is populated by processes other  than t h e  resonant exc i ta t ions  from 

lower states; t h a t  is, t h e  case of a planetary atmosphere w € t h  i n t e rna l  

exc i t a t ion  sources. Tney may be e i t h e r  chemical o r  thermal exc i ta t ions  or  

cascading t r a n s i t i o n s  from higher energy leve ls .  

I. Basic Equations of Radiative Transfer f o r  Coupled Resonant and 

Fluorescent Lines and Their Solutions 

1. %Sic Equations 

L e t  us consider a group of the l i n e s  which aris'e i n  t h e  absorption 

processes from t h e  ground state Xm 

state  A f A which is common t o  a l l  of t h e  X m ' s  and t h e  emission processes 

from A B, (1 = 1, 2, . . . , 6 ) .  'The l i n e  is ca l l ed  

e i t h e r  resonant or  f luorescent  according t o  whether B & X  o r  B e  X (cf .  Fig. 

X, (m = 1, 2, , . . , 6)  t o  t h e  exci ted 
..A 

P 
t o  t h e  f i n a l  s ta te  Bi 

P 

J 
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For mathematical convenience we shall make no d i s t i n c t i o n  between t h e  

s t a t e s  belonging X and B, namelywe put B = X. This procedure does not 

spec ia l i ze  t h e  problem, s ince  the  f luorescent  rad ia t ions  a r e  free from t h e  

reabsorption process so tha t  they may be t r e a t e d  a s  t h e  "resonant l i n e s  w i t h  

zero absorption coeff ic ient" .  Then, s ince  the exci ted s t a t e  A i s  f ixed,  

one can specify t h e  quan t i t i e s  r e l a t ed  t o  t h e  t r a n s i t i o n  X+A +X 

using only one s u f f i x  m o r  4. 
t r a n s i t i o n  probabi l i ty  f o r  the  t r ans i t i on ,  X -*Ayespec t ive ly ;  l ikewise,  

m P  
the  spec i f i c  i n t e n s i t y  f o r  t he  t r ans i t i on ,  A + X  

P 

m p  l b y  

For instance,  t h e  absorption coe f f i c i en t  and - 
(am wri f ren  as x,,, ami An, 

as 11 . 
P 1' 

I n  formulating the r ad ia t ive  t r a n s f e r  equations, t he  following condi- 

t i o n s  will be assumed i n i t i a l l y :  

(1) 

(ii) The sca t t e r ing  atmosphere i s  passive t o  the  ex terna l  r ad ia t ion  

The sca t t e r ing  i s  i so t rop ic  and coherent; 

sources, and has no i n t e r n a l  r ad ia t ion  sources beside the co- 

herent re-emission of the absorbed radiat ion;  

(ili) The exci ted state A 

processes Xm+A 

t r a n s i t i o n s  from t h e  higher exc i ted  leve ls ;  

can be populated only through absorption 
P 

(m = 1, 2, . . . , s), but not through the cascade 
P' 

( i v )  There is  no continuous absorption o ther  than the per t inent  

resonant absorption. 

The cases where these  conditione axe not s a t i s f i e d  will be discussed i n  

t h e  later sections. I n  the plane-paral le l  atmosphere, the  r ad ia t ion  f i e l d  

i s  governed by a set of in tegro-d i f fe ren t ia l  equation8 (Sobouti, 1962), 
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where 

- = I  J 
zi 

i s  t h e  "grand" op t i ca l  depth, &,nm(z) and z being t h e  molecular absorption 

coef f ic ien t ,  number densi ty  i n  t h e  m-th state, and height respectively; 

t h e  spec i f ic  Edsorption coeff ic ient  of L e  1- th  component; 

n st  
t h e  albedo of t h e  t = t h  component, Ai, Q and dm being Einstein 's  t r a n s i -  

t i o n  p robab i l i t i e s  and deactivation rate 04 t h e  A 
- 

state respectively: 
P -  

d i rec t iona l  cosines of t h e  incident flux and observing l i n e  of s igh t  

respect ively;  
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incident radiation f lux at the top of the atmosphere; 

and 

Y 
the specific intensity of the I-th component at depth, t and in the 

direction, . P 
In this paper we w i l l  use the following purely non-dimensional 

equations 

f: 
( 9 )  

v u  
I 

I, *# 

is the specific incident flux for the m-th component, and I 

given in u n i t s  cf cW‘& /4w0 Evidently, we have 

(t p )  is 
* #  

’I, =l 

m rr 
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One meri t  of using (8) f o r  (1) w i l l  be tha t ,  i f  f,' is replaced by 

2 nF:, i n  rayleighs/cm 1 em-', t he  so lu t ion  w i l l  be obtained i n  u n i t s  of 

= 0, one can obtain raylelghs/cm-l. Alternat ively,  if f n  Y I 1, while fm 3 ~ 

t h e  response funct ions f o r  t he  unit  input  of t h e  n-th r ad ia t ion  because 

of t h e  l i n e a r i t y  of t h e  equations. 

number dependence of q u a n t i t i t e s  w i l l  he reaf te r  be omitted so long as no 

confusion i s  possible.  

The s l l f f ix  P which ind ica t e s  the wave 

I n  analog t o  Eq. (90 )  of R. T., Chapter I, t h e  apparent so lu t ions  of 

(8) which s a t i s f y  t h e  boundary conditions a t  both t h e  top  (t = 0) and 

bottom (t = to) of t h e  sca t t e r ing  atmosphere are, 

and 

( ~ s / , 3 . J  ,..., 0 , c p i  / A  ( U b )  

where J ( t)  i s  t h e  average in t ens i ty  of t h e l - t h  cmponent ( i n  un i t s  of 

2 wc / 4 ~  ) at depth t, defined by 
& 

with 
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and 

I n  the  context of Chandrasekhar's quadrature approximation method, 

(R. T., p. 801 JS(t) may be approximated by a quadrature, 

where a.  and I 

in t ens i ty  which a r e  associated t o  t h e  cha rac t e r i s t i c  root,  

( j  = k 1, f2, . . . , fn) ,  of the  Legendre polynominals, Pen( /4 J 

a r e  respect ively t h e  Chris toffel  number and spec i f i c  
J mj 

PJ 
= 0. 

The following r e l a t ions  will be used frequently i n  t h e  l a t e r  d i s -  

cussions (R.  T., p. 6 2 ) :  

and 

where 
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Now, i n  terms of I Eq. (8) may be subs t i t u t ed  by an equivalent m j '  

s e t  of 2sn l i n e a r  d i f f e r e n t i a l  equations, 

Since these  equations a r e  l i n e a r  with respect  t o  I 

comprise one set of pctrt icular solut ions and 2sn sets of t h e  solut ions 

f o r  t h e  assoc ia ted  homogeneous equations, 

t h e i r  solut ions ti' 

2. Pa r t i cu la r  Solut ions 

Since r i g h t  hand s i d e  of Eq. (20) i s  regarded t o  be a product of 

and t h e  "grand" source function, 

which is 

obtained a s  

a funct ion of-only t, a p a r t i c u l a r  so lu t ion  of I i s  eas i ly  l i  

where ym, (m = 1, 2, ..., 6 )  is  a constant def ined by 
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J 

T h i  s expression may be compared t 0 - R .  T. 

3. Solutions of t he  Associated Homogeneous System 

The so lu t ions  of the associated homogeneous system, (21) are l i n e a r  

combinations of 2sn d i s t i n c t  fundamental solut ions,  

o r  

(Cf. R. T., p. 81) 

I n  f a c t ,  it may be shown t h a t  Eq. (27) allows 2sn d i s t i n c t  r e a l  

so lu t ions  
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so t h a t  t h e  general  so lu t ions  of (21) can be given by 2sn l i n e a r  cambin- 

a t ions  of ( 2 5 ) ~  namely 

where L 's are 2sn constants.  s d 

However, i n  t he  conservative case*, i.e., 2 &,,, = / while km f 0 

f o r  a l l  m, 

**m = 0 ,  

provide doubly degenerate zeros of (27). 

I n  t h i s  case, it may be seen readi ly  tha t  

and 

* 
components are resonant (k f 0) a n d z a -  = 1 is s a t i s f i e d .  

s 
not be  conservative even If 

component, s ince  for t h i s  component, km = 0. 

We s h a l l  def ine as t h e  conservativ- system tha, sys,em i n  which all t h e  
r 

The system w i l l  
m 

8, x=. 1 when t h e r e  e x i s t s  any f luorescent  
m cl-r *. 



-13- 

where b and Q a r e  constants*, a r e  two independent so lu t ions  t o  be added t o  

other  2611-2 solut ions given as (29). Therefore, i n  the conservative case, 

t h e  general  solut ions (29) should be replaced by 

4. ComDlete Solutions 

From (23) and (31) one can obtain t h e  complete solut ions of (20) f o r  

t h e  conservative case as, 

SH -I 

/ -At 
e +  *ti * kR [$ct+@ t Q +  dt -sa+ I L, / +  ridd 

fi!! 

The solut ions f o r  non-conservative cases have t h e  same form as (32) 

with b = Q = 0, and t h e  summation over o( extended from -sn t o  +sn. 

he rea f t e r  refer t o  Eq. ( 3 2 )  a6 the  standard solut ions,  s ince the  non-conserva- 

We shall 

t i v e  cases are dea l t  w i t h  i n  qu i te  analogous fashion, merely dropping the  

t e r m s  with b and Q. This equation may be compared t o  R. T., p. 82, Eq. 92. 

Subs t i tu t ion  of (32) i n  (22) r e s u l t s  i n  t he  grand source function. 

* 
and B L d f s  a r e  the present  Q and Late  respectively.  

Chandrasekhar excludes b outside of the  brackets,  1, so t h a t  h i s  bQ 
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(Cf. R. T., p. 196, Eq. 77) 

N e t  Flux and Total Reflection and Transmission 5 -  -- 
Similarly,  t h e  net flu of the whole f luorescent  system* is  obtained 

5 
( i n  uni t s  of C?rrF, ) a8 

*r - 1  
+ I  

-- 2 * The external  p a r t  of flu, -ifm e ro is excluded. 
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The t o t a l  r e f l e c t i o n  from t h e  top i s  then, 

Likewise, t h e  t o t a l  transmission from the  bottom i s  

S - &to - f i  c [ 1 -  (hg- /)-/,It42 P o  
m=l b l  . 

(36) 

Especially f o r  the  conservative system, s ince $ 5 1 , one obtains 
4s I 

and 

Whence 

This r e l a t i o n  implies t h a t  the t o t a l  amount of rad ia t ion  emergent 

from the  l aye r  balances exact ly  the t o t a l  amount of rad ia t ions  absorbed. 
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Further, s ince  both rcF ref  

t o t a l  amount of r ad ia t ion  

and fltrans are p o s i t i v e  and never exceed t h e  

absorbed we have from (37), (38) and (39). 

and 

f Rm - - t o  

C f m e  P.0 

b & o  

c f- 

6. Boundary Conditions 

The 2sn constants,  b, Q, and L d  ' 6  i n  Eq. (32) a r e  t o  be determined 
I 

so t h a t  I ' 6  s a t i s f y  the boundary conditions a t  two boundaries, namely, li 

- b  

and 

= 0 ;  
" 0  

K - 7 Q  + 
$1 

2-' 
dr-rn* 

+ 
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7. 

Once t h e  b, Q and La( 

Standard Solutions f o r  Specific I n t e n s i t i e s  

's are determined by (428, b), the spec i f i c  in -  

t e n s i t i e s  can be derived from t h e  grand source function (33).  Since 

l k t r  L d t - s i t  I J 

and 

&ct,-p) = 

(Cf. R. T., p. 83, 

L 

Sn- I 
d fidt 
e .  - e + ] +  
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11. Solut ion of Radiative Transfer f o r  Coupled Resonant o r  Fluorescent 

Lines i n  t h e  Presence of Continuous Absorption 

. 

If continuous absorption coexis ts  with t h e  s e l e c t i v e  resonant absorp- 

t i ons ,  equation (8) w i l l  be modified (Sobouti, 1962) t o  

-~ .qct:p) + 4 4 rt:p) = 

t t  E !Gtl 
dt' 

s 
= -  & 2 q j - m , t ; f ' , y ~ +  L & f h  e f Q  

a: I 
-1 2 m:) 

(45) 

where t '  , kml and $are newly defined using t h e  l i n e  absorption coef- 

f i c i e n t s ,  (1 = 1, 2, . . ., s)  and continuous absorption coef f ic ien ts ,  
A?' 

( = 1, 2, ..., S) by 5, 

and 

XI + 4( 
2 (A4 t d d  (48) 

d =f 
It can be shown t h a t  t h i s  planetary M?lne-Eddington equation c m  be 

converted t o  t h e  standard form, Eq. (8) by transformation of var iab les  and 

constants .  F i r s t  of al l ,  w e  put  
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and 

J c l ( t / , f f )  = - *'J,ct:p) I6 
(52) 

Equation (49) may be compared w i t h  Eq. (2) of Chamberlain and Sobouti (1962). 

Now, it w i l l  be observed t h a t  Eq. (45) is  rewr i t ten  i n  terms of t h e  

above quan t i t i e s  as 

(53) 

This equation has exact ly  t h e  same form as Eq. (8) which i s  derived 

f o r  an atmosphere without continuous absorption, i f  t h e  var iab les  and con- 

s t a n t s  x i t h  a prime i n  Eq. (53) correepond t o  those without a prime i n  Eq. 

(8), and Kl t o  kd . This r e s u l t  means t h a t  a l l  the  "monochromatic" 
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r e l a t i o n s  developed i n  t h e  previous section, f o r  example, equations (44a, b) 

remain valid with t h e  above new var iab les  and constants even when allowing 

f o r  the existence of continuous absorption. 

Therefore, solut ions are first obtained i n  t h i s  new var iab le  system 

and then they are converted t o  the  quan t i t i e s  of t he  real r ad ia t ion  f i e l d  

by r e f e r r i n g  t o  (49) - (52). 

111. Line I n t e n s i t i e s  i n  t he  Single Scat ter ing Approximation 

The resdts of Sec. I can be reduced t o  simpler forms i n  cases where 

e i ther  t h e  albedos of t h e  "resonant" components a r e  s m a l l ,  o r  the  t o t a l  

op t i ca l  thickness  i s  small. I n  both cases the so lu t ions  have the same form 

as (l la,  b )  where J (t) i s  approximated by 1 

This approximation corresponds t o  having 

'y, 3 0 ,  and b = Q + = L 4 + 0  0 

i n  ( h a ,  b). Accordingly w e  have 
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(Cf. R. T., p. 217, Eq. 60) 

Although t h e  so lu t ions  f o r  both 2 / and t e 1, have t h e  same 
0 Res. 

form, t h e  reason f o r  t h e  approximation procedure i s  d i f f e r e n t  i n  t h e  two 

cases. I n  t h e  former case, t he  above solut ions can be considered as t h e  

first order approximation of I I (t ,p)  when it i s  developed i n  power 

series of $ as 

On t h e  o ther  hand, t h e  la t ter  case i s  based on t h e  assumption tha t  

f o r  small values of to. 

Quite o f t en  t h e  t o t a l  i n t ens i ty  of l i n e  component is the  measurable 

quant i ty  ins tead  of the  "monochromatic" in tens i ty .  Here' t he  l i n e  in t ens i ty  

i s  defined by 

Line (58) 

Integrat ion of (55a, b)  over Y can be  done easi ly ,  when all the  l i n e  

components have t h e  same Doppler absorption contour 

- 2  
w(+vc 1 

c -  ~ i - 9  e Y p  ' 

( 5 9 )  

where$ and 5, stand f o r  t he  absorption coef f ic ien t  at t h e  l i n e  center  of 

t h e l - t h  component and t h e  mean wave number of the  whole system respect ively,  

and V L i e  t h e  e f f ec t ive  Doppler width defined by 
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with 

U =  g? J 

t h e  most probable ve loc i ty  of t he  f luorescing pa r t i c l e s .  I n  f a c t ,  one can 

wr i t e  down t h e  i n t e g r a l s  of (55a, b) i n  terms of t h e  curve of growth funct ion 

( C f .  Landenberg, 19301 Struve and Elvey, 1934; Cowan and Dieke, 19481 

Unsdld, 1955 j Penner, 1959), 

Tne r e s u l t  of t h e  in tegra t ion  of (55a, b)  over wave number i s  found t o  be 

and 
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I n  deriving (63a, b) it is assumed t h a t  fmfs a r e  constant across t he  

This assumption w i l l  be usually f u l f i l l e d  provided the incident  l i nes .  

flux is e i t h e r  continuum o r  a well-broadened l i n e  (Chamberlain and Sobouti, 

1962). The r i g h t  hand side of (6311) has a s ingu la r i ty  when 

/ u l k p  p e / # m  

I n  t h i s  case, one term of  t h e  s ingular i ty  i n  (63b) should be replaced as 

nr. 

c # 

Line In t ens i ty  i n  t h e  Atmosphere 

1. Resonant In t ens i ty  

I n  t h e  semi-infinite atmosphere, the  terms of (44a, b) which Increase 

i n f i n i t e l y  at to = 00 ehould be excluded; SO t h a t  b and L-& are put equal 

t o  zero. Accordingly, t h e  other sn  constants 

from the boundary condition ( h a )  alone. 

are no longer t h e  functions of wave number, provided a l l  t h e  l i n e  corn- 

ponents have the  same absorption contour. 

and L+a( can be determined 

It should be noted that these 

This kind of simplif icat ion f o r  t h e  semi-infinite atmosphere may be 

applicable also f o r  t h e  sca t te r ing  from t h e  atmosphere with l a rge  op t i ca l  

thickness. I n  t h i s  approximation, the "monochromatic" in t ens i ty  is given 

by equations (44a, b). 

In tegra t ion  of (Ua, b) over y y i e l d s  t h e  l i n e  in t ens i ty  



2. Fluorescent Intensity 

Tne fluorescent intensity can be deduced 8 8  the special cage of 

(65a, b) where k l  I 0. 

it is given by 

Since Q 3 0, if any fluorescent line .exists, 
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and 

3. 

When both t h e  conditions, to, tal, and to - t,) 1 are sa t i s f i ed ,  

Line In t ens i ty  at Large Optical  Depth 

a l l  t h e  terms except those with Q vanish i n  (65a, b)  because t h e  Z- 

funct ion i n  t h i s  case i s  apparently constant, being independent of i t s  

argument. 
- - -  

P ,  Therefore, w e  have fo r  l a rge  extent  of 

J$++,F) = J&-fJ 

where Zo stands f o r  t h e  average value of Z(y) and ac tua l ly  may be set  

equal t o  Z(kj to). 

rad ia t ion  f i e l d  tends t o  be i so t ropic  as the depth increases  and t h e  r e l a t i v e  

This r e s u l t  means that i n  t h e  conservative case, t h e  

S 
i n t e n s i t y  approaches - *.i . For non-conservative cases ( 2 a,,, 4 / ; 

$4 f. * * I  

o r  k = 0 (r 

"resonant" i n t e n s i t i e s  vanish a t  l a r g e  o p t i c a l  depth whereas the f luorescent  

s) though 2, a,, S / ), Q i s  equal t o  zero, so that t h e  
- * I  

r 

i n t e n s i t i e s  have f i n i t e  values  as 

(Fluorescent Lines, to, t 1). 
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where Zo again stands f o r  t h e  average value of Z(k, t)  and Zl( km/ro t). 

These r e s u l t s  show t h a t  at l a rge  op t i ca l  depth t h e  r ad ia t ion  i s  e n t i r e l y  

pumped i n t o  t h e  f luorescent  l i n e s .  

V. Effect  of Cascade Transit ions 

1. Preliminary Considerations 

As mentioned i n  t h e  introductory p a r t  of t h i s  paper, sometimes it 

happens t h a t  t h e  upper state of a coupled f luorescent  system coincides with 

t h e  final state of o ther  f luorescent  system (Brandt, 1959). 

t h e  atmosphere has an ac t ive  source ins ide  of it. L e t  us discuss  t h e  

p r a c t i c a l  treatment of such an effect on the  f luorescent  system. The 

I n  t h i s  case, 

grand source funct ion (22) i s  then replaced by 

J(t) = JG+ J& +- J 'ctl, 
where f(t) and Je(t) are defined as before (Eq ' 8  13 and 14) 

(69) 

and Ji(t) 

stands f o r  t h e  active source function ins ide  of t h e  atmosphere. 

because of t h e  l i n e a r i t y  of Eq. (20) the complete so lu t ion  w i l l  be t he  sum 

of t h e  two solut ions which are solved f o r  t h e  ex terna l  and i n t e r n a l  sources 

respect ively.  

for  t h e  so lu t ion  f o r  an ac t ive  source of t h e  form 

However, 

Therefore, we may put  Je(t) I O  i n i t i a l l y .  First  we look 

The rad ia t ion  f i e l d ,  due t o  t h i s  grand source function, w i l l  be 

governed by t h e  l i n e a r  differential equations, 



(71) 

The p a r t i c u l a r  solut ions f o r  t h i s  set of d i f f e r e n t i a l  equations can be 

obtained i n  qui te  an analogous way with  t h a t  adopted i n  Sec. I, 

found t o  be 

They are 

w i t h  

I 

(73) 
%' "CCI = 

*=/ j : -h  
The so lu t ions  of the a660Ciated homogeneous given by 

Eq. (3l) ,  but  the  constants b(k), Q(k)  and L, (k)'s must s a t i s f y  the 

boundary conditions, corresponding t o  ( k a ,  b )  

and 
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Then, t h e  source funct ion and t h e  spec i f i c  i n t e n e l t i e s  correspondin$ t o  

(43) and (44a, b) me respectively,  
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Now it may be seen t h a t  80 far a s  mathematical procedures are concerned, 

there i s  no d i f f i c u l t y  i n  extending the theory t o  an a rb i t ra ry  d i s t r ibu t ion  

of an ac t ive  source function, if it is given - a priori ,  since any d i s t r ibu t ion  

of source, J ( t )  can be w r i t t e n  as 

m 

0 

where g(k) i s  t h e  Laplace transformation of J(t),  i.e., 

et; - 
(77) 

In  f ac t ,  t he  solut ions f o r  t h i s  source d i s t r ibu t ion  w i l l  be obtained 

by in tegra t ing  the solut ion f o r  g(k) over k. 

2. 

Suppose the coupling resonant and f luorescent  system’X m v  -A p’ 

Apphximation i n  t h e  Treatment of Cascade Transit ion 

(m = 1, 2, ..., 6 )  whose upper s t a t e  A 

f luorescent  systems, Xn$B -7 A 

which are exci ted by the  incident fluxes f 

. . . , r), 
t o  the  latter, the  r ad ia t ive  quant i t ies  f o r  the la t te r  systems may be 

approximated in t h e  treatment as developed i n  Sec, I. 

f o r  t r a n s i t i o n  q j p  of each system may be wr i t t en  as 

is also populated by t h e  other  
P 

(n  = 1, 2, ..., 8; q = 1, 2, ..., r), 
9 P: 

(n  = 1, 2, ..,, 6; q = 1, 2, 
qn ’ 

(Cf. Fig. 3). If the re  1s no reac t ion  from the  former system t o  

The source functions 
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where every quantity is spec i f ied  by i t s  corresponding t rans i t ion .  

t h e  source function f o r  the J ' t h  camponent of t h e  X 

t h i s  cascading i s  

Then, 

8% system due to 

where 

i s  the r a t i o  of o p t i c a l  thickness of cascading and cascaded systems, As 

stated i n  Sec, V. - 1, there would be no necessi ty  t o  consider the popu- 

l a t i o n  of i$ from X by d i r ec t  exci ta t ion due t o  external sources, s ince 

the  f i n a l  solut ions will be obtained by the simple summ~tion of the two 

independent solutions,  one f o r  t h e  external  source and the  other  f o r  the 

cascade population. 

%l 

Therefore, one can assume t h a t  

fp  J 0, (m = 1, 2, .,., s) 

Under t h i s  asslunption, the equations of r ad ia t ive  t r ane fe r  i n  the  

n-th approximation are 
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By making use of the general  treatment of t h e  previous paragraph, 

where 
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and 

c 

/ 
Qi 

The constants i n  (84) b 

conditions 

C$ and L P A can be determined from t h e  boundary 
- P  

and 

(8P) 

Whence, t h e  average i n t e n s i t y  J 

deduced respec t ive ly  t o  be 

(t ) and t h e  spec i f i c  i n t e n s i t y  may be 
PA p 

f 

5, 



. 
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l +  
+ 

J *% 
c - P I  I+ 
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VI. Numerical Example - (01)1302-4-6A Dayglow 

An example of a coupled resonance system i s  found i n  the  u l t r av io l e t  

dayglow of atomic oxygen, (01)1302-4-6A. This t r i p l e t  emission I s  be- 

l ieved  t o  or ig ina te  from two d i f fe ren t  sources, aamely 

1. Direct resonance of solar (01)1302-4-6~ emission, 

(90) 
4 3  ) + h 3  (1302-4-6) O( 3 3  3s S,); 

o(2p p2,1,0 

2. Cascade t r a n s i t i o n  initiated by so la r  Xpn8n-p emission, 

o(2p4 3p2) + w C L ~  1 4 o(2P 3 3  3d D~ J 9 ,  

The latter mechanism was or ig ina l ly  suggested by Bowen (1947) f o r  

astrophysical i n t e r e s t  and was s t u u e d  by Brandt (1959) i n  connection 

w i t h  t h e  (01)11260~- and 8446A- doyglow. Since solar (01)’1302-4-6 and 

Lyman-p emissions have i n t e n s i t i e s  of the same order of magnitude as 

shown i n  Table I, both t h e  mechanisms (1) and (2) w i l l  contribute t o  the  

formation of (01)1302-4-6A dayglow. 

states spec i f i c  absorption coeff ic ients  and op t i ca l  depths f o r  systems 

Albedos, populations i n  the  ground 

(1) and (2)  can be calculated w i t h  t he  a id  of the  re la t ions ,  

and 



, 

w i t h  

~~ 
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and :* t h e  r e l a t i v e  population6 i n  each of t h e  ground states. The 

albedos a r e  ca lcu la ted  from t h e  r e l a t i o n  

u=/, 2, 3 3 ,  
where fl = of each level .  The O S C i l -  

l a t o r  s t rengths  are tabula ted  i n  Table 111. 

The o p t i c a l  depths f o r  t h e  systems (1) and (2) a r e  then computed 

from 

c 3  -14 t = *( PJ - 3S1) = 5.334 x 10 N(O,z),  
J 

t(Lp) = 2$c(3P2 - 3DJ) = 1.064 x 10 -14 N(O,z) ,  

J J 
( T  = 800OK) (97) 

The absorption due t o  molecular oxygen w i l l  prevent t h e  l&man-- 

and (01)1302-4-6A rad ia t ions  from penetrat ing lower than  t h e  100 km 

level. 

i v e l y  1.97 x and 9.87 x a t  100 km. Therefore, t h e  ea r th ' s  

atmosphere i s  o p t i c a l l y  th i ck  f o r  these  r ad ia t ions  (Table Iv). 

The values of o p t i c a l  depths f o r  these  r ad ia t ions  a r e  respect-  

The l i n e  i n t e n e l t i e s  of (01)1302-4-6 A dayglow are then obtained 

by means of d i r e c t  appl ica t ion  of t h e  approximation procedures developed 

i n  sec t ions  IV and V. Figure6 4-8, b, c and d show t h e  l i n e  i n t e n s i t i e s  
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of 1 3 0 6 ~ ,  1304A and l3O2A components f o r  un i t  inputs  of so l a r  1306~, 1304A; 

l3O2A and 1026( LP ) A rad ia t ions  respect ively i n  t h e  conservative case as 

observed looking up ( f =  -1.000) when the  so la r  rad ia t ion  i s  s t r a i g h t  

down. 

source function (n=l) .  Because of t h e  l i n e a r i t y  of the  t r a n s f e r  equations 

w i t h  respect t o  incident radiat ions,  the  ac tua l  a l t i t u d e  d i s t r ibu t ion  w i l l  

be a l i n e a r  combination of t h e  curvet3, t he  combination constants being 

determined by t h e  r e l a t i v e  amounts of incident  fluxes. 

These curves are obtained f o r  the  f i r s t  approximation i n  the 

V I I .  Discassions 

A t  the  top and bottom of the  sca t t e r ing  atmosphere, t he  i n t e n s i t i e s  

deduced from the quadrature approximation, (&a,b) w i l l  approach the  exact 

values  which the rigorous .theory provides i n  terms of generalized H- 

o r  X- and Y- functions. The proof is  r a the r  complex but fundamental. 

(Cf. R. T. I11 26-5 and VI11 59-1). For example, Sobouti’s generalized 

H-function can be derived in t h e  n-th approximation as 

Then, d i f fuse ly  sca t te red  i n t e n s i t i e s  emerging from the  top of semi- 

i n f i n i t e  atmosphere are given by 

) is  one of t h e  elements where 2.‘ f#t, 
i 

of a sca t t e r ing  matrix defined by 
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R a t  i ona l  

i n  qu i t e  

The 

based on 

representat ion of generalized X- and Y- functions w i l l  be derived 

an analogous way t o  R. T. V I 1 1  59-1. 

foregoing diSC~mf3iOnB on coupled r ad ia t ive  t r a n s f e r  problems are 

t h e  assumption t h a t  t h e  sca t te r ing  by f luorescent  p a r t i c l e s  takes 

place coherently at t h e  B a m e  wavelength w i t h  t h e  incident  radiat ion.  

Doppler incoherency due t o  motion of f luorescent  pa r t i c l e s ,  as estimated 

by Henyey ( l g b ) ,  may give a modification t o  t he  theory of r ad ia t ive  t rans-  

The 

fer  espec ia l ly  I n  an op t i ca l ly  th ick  atmosphere. 

i n  t h i s  connection that the  theory of coupling i n  sect ions I and IV can be 

extended t o  the  case of Doppler incoherent e f f e c t  where the  wavelength sh i f t  

i n  the sca t t e r ing  process can be regarded as a “continuousn coupling of 

r ad ia t ion  of the  incident  wavelength t o  tha t  of the emergent wavelengths. 

It would be worth not ic ing 

I n  order t o  Bee such an e f f e c t  readi ly ,  one can consider the  l i n e  feature 

i n  t h e  Doppler core. 

t r i b u t i o n  of sca t te red  rad ia t ion  i s  approximately Gaussian i n  the Doppler 

core, being independent of the  incident frequency. In  t h i s  approximation, 

the i so t rop ic  equation of t r ans fe r  f o r  a s ingle  component system i s  wri t ten  

As ehown by Jeffries and White (1960), spec t r a l  dis- 

as 

-P 

a 

& -  & 2 
I -  

lE 

I 
2 
c 

s 00 
Being a&logous t o  t h e  t r a n s i t i o n  from Eq. 

)A’ + 

(8) t o  Eq. (20) i n  

radiative transfer equatione, Eq. (101) can be subs t i tu ted  f o r  by an 

equivalent e e t  of l i n e a r  equations of i n t e n s i t i e s  at  f i n i t e  equi-distant 

po in te  of frequencies, x = xl, x2, x3, . . . , xCySnemely, q 
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d t  
+ e -rpo ‘pi 4 i  + 

This equation has exactly the  same form as Eq. (20), I f  one compares the  

symbols and constants of Eq. ‘8 (20) and (102) i n  the  following scheme: 

I103 1 
while the  r o l e  of i and j being unchanged. Therefore, t he  l i n e  p r o f i l e  

can be estimated t o  an a rb i t r a ry  degree of approximation with the  same 

procedure as Sec. 1. Especially i n  t h e  conservative case, s ince 

Eq. (102) h e  a s e t  of pa r t i cu la r  Integrals, 

L* 
and 

f 
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Since t h e  i n t e g r a l  (105a) tends t o  zero at l a rge  o p t i c a l  depths, w e  have 

f o r  l a rge  values of t, 

(-106a) 

a n d  
2 

-2 

Consequently, the  spec t r a l  l i n e  w i l l  become f la t  and i so t rop ic  at  l a rge  

o p t i c a l  depths. This e f f e c t  is  similar t o  t h e  broadening of stellar 

abeorption l i n e s  by e lec t ron  sca t te r ing  (Mhch, 1948). Then, t h e  dayglow 

emissions observed at  l a rge  op t i ca l  depths w i l l  have extended wings and 

these wings may form a false continuum t o  the  emission lines. I n  t h i s  case, 

t he  measured l i n e  i n t e n s i t y  may deviate from t h e  theo re t i ca l  l i n e  in tens i ty .  
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0.025 
0.04 

TABLF: I 

SOLAR RADIATION DAW FOR (01)1302-4-6 DAYGLOW 

0,058 
0.09 

Wavelength (A) 

1.68 
2.54 

0.0283 
0,0434 

0.0117 
0.0178 

Total flux of Touseyl 
so l a r  l i n e  i n  Johnson2 
erg/ cm2/ s ec 

Total  flux of Tousey' 
solar l i n e  i n  Johnson' 
109 p/cms/sec 

3.81 
5.91 

0.0659 
0.101 

0.0268 
0.0415 

1 rc~c r i n  Tousey12 
lo9 p?cm2/sec Johnson 

L - b  

1026 

0.06 
0.2 

3.10 
LO. 33 

0,0236 
0, log 

0.0170 
0.0568 

1302 

0.013 
0.02 

0,0147 
0.0226 

0.00605 
0.00925 

1304 

0.020 
0.03 

0.0227 
0.0348 

0,00930 
0,0143 

U 

1. Detwiler, C. R., Garret, D. L., Pureell ,  J. D., and Tousey, R., 
1961. 

2. Johnson, F. S., 1961 

3. 
0 

The e f f ec t ive  width of the l i n e  i s  assumed t o  be LA. 

4. The Doppler widths of L-p and (01) l i nee  a r e  assumed t o  be 
0.523 cm-1 and 0.412 cm-l respectively,  corresponding t o  
T = 800°K. 
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Transition Wavelength g n*/ n 

1306.03 1 0.1111 0.0834 

2 3s1 - 3Pl 1304.87 3 0. 3333 0.2845 

3 3s1 - 3p2 1302.42 5 0,5556 0.6321 

1 3s1 - 3, 0 

I 

TABLE I1 
RADIATIVE TRAN6FEl -8 OF (01) 1302-4-6A RMOHAHCE SYSTEM 

k 

0.0834 

0.2845 

0.6321 

~ 

2p4 3P2 - 2p33d h3 

2p4 3P2 - 2p33a 3D1 

2P43p2 - 2p3d 3 3  D2 

TABLE I11 
OSCILLATOR STRENG!!XS 

0.01 

0.0017 m o l t ,  1956 

0.0001 

I w a n s i t i o n  I f I Reference' 

Kelly, 1963 I 0.0299 
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Height 

(b) 

100 
120 
140 
160 
180 
200 

300 

500 

1000 

TABLE N 

MODEL AIMOB- FOR (01)1302-4-6 REBOBANCE BYSTEM 

i.70+12 
1.8~11 
5.60+10 
2.52+10 
1.34+10 
7.8w 

1.85+18 

9.7&16 
6.15+16 
4.12+16 

9.77+15 

5,8&15 
a.66+15 

3.7913 
1,82+11 

3. Th17 
1.72+17 

200 
380 
560 
700 
824 
941 

1445 

1500 

1500 

1000 

1000 

t 

C)ptical 
Depth 

9.87+4 
1 994 
9 17+3 
5 22+3 
3.2&3 
2.2~3 

5.21+2 

3.14+2 
1.42+2 

2-03+0 
9.73+3 

t ( L @  1 
Optical 
Depth 

1.97+4 
4.00+3 
1.83+3 
1.0bt3 
6.56+2 
4.40+2 

1.0bt2 

6.27+1 
2.83+1 

1.94+3 
4.05-1 

Below 300 km: Chamberlain, 1961 

Above 500 km: Johnson, 1961 
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Fig. 1 Diagram showing t h e  r ad ia t ive  t r ans fe r  problem for  a 
coupled resonance system. 

Fig. 2 Traneition diagram of a coupled resonance and f luorescent  
system. 

Fig* 3 Coupling of two resonance systems by a cascading 
t r ans i t i on .  

Fig. 4 a,b,c,d 
I n t e n s i t i e s  looking s t r a igh t  up of (01)1302-4-6~ f o r  
un i t  input of each so lar  (01)1302-4-6A, and Ig,g 
rad ia t ions  incident  normally downwards ( u n i t s  i n  $ID). 



I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 

c. I 
Q 

c\1 I 
I c - 

I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

+ 
%* 
Y 

2 I 



v, 
W 
K 

v, 
W 
LT 

m 
W 
LT 

- 

m 
W 
[r 

v, 
W 
K 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

q 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
q 

cn 
W 
K 

L S 
2 

I 



/ 

i 

b 
m 



I 

Fa- - 

I 5 

U 
- d -  

- 

/’ 
/ 

/ 
/ 

7 
/’ 
/ 

t 
2 

U 

4 ‘H ld3a  lW311d0 



* L 

I 

IO 

\ 100 

1- 
I- 
Q 
W 
0 

1 

0 
I- 
Q 

a 

0 103 

- 

I o4 
1 3 0 2 A A  

rF2 1304A 

\ 
\ 
\ \  x 2 \ \ \ \ 

\ 
\ 

k \ \ 

\ 
\ 
\ +- I 

\ 
\ 
\ 

\ 

\ 
I 
I 
I 
I 

105 



I 

IO 

'r, 100 

1- 
I- 
II 
W 
0 

1 

0 
I- 
II 

a 

O to3 

- 

io4 

I 
7r5 1302A 

L 

\ '\ 
&- % I I 

I I 

\ \ 
\ 
\ 

- 4d,, 

I \ \  
I I ' \  

\ 

\ 

1 
I 2 3 4 5 

IO' 
0 



4 dkl306A ’ 

\ 

\ 

\ 

\ 
\ 

\ 

& \ 

\ 
\ 

\ 

\, 
\ 

\ 

\ 
\ 

I I 

\ 

\ 

\ 
\ 

\ 

\ 
\ 
\ 

0 I 2 3 4 5 6 

&\ 


